设为首页收藏本站

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 1578|回复: 20

ITS ePrimer - Module 13: Connected Vehicles

[复制链接]
发表于 2015-7-12 01:56:25 | 显示全部楼层 |阅读模式
PurposeThe purpose of this module is to describe the background, current activities, and future direction of the connected vehicle initiative. The module examines the anticipated roles and responsibilities of the principal participants; the major technologies and systems development efforts; the range of expected applications of the connected vehicle system; the potential institutional, policy, legal, and funding challenges facing the initiative; and the expected development and deployment timeline for a connected vehicle environment.


ObjectivesUsers of this module will understand the following:
  • The history, evolution, and expected future direction of the connected vehicle program, including the major milestones;
  • The partnership between government and industry as well as the roles of each partner that will be fundamental to a successful connected vehicle program;
  • The basic technologies and the various core system components that must be deployed to realize the connected vehicle environment; and
  • The key policy, legal, and funding issues that must be addressed to successfully deploy a connected vehicle environment.


Introduction: Definition and Programmatic OverviewThe fundamental premise of the connected vehicle environment1 lies in the power of wireless connectivity among vehicles (referred to as vehicle-to-vehicle or V2V communications), the infrastructure (vehicle-to-infrastructure or V2I communications), and mobile devices to bring about transformative changes in highway safety, mobility, and the environmental impacts of the transportation system. Over the past decade, wireless technologies and wireless data communications have fundamentally changed the way we live our lives. Instant access to information and the proliferation of "apps" through which we are able to perform almost limitless functions have dramatically recast the ways in which we work, play, and socialize. The transportation system has not been immune to these changes.
The core technology component of the connected vehicle environment is wireless communications. Further discussion on the appropriate communications technologies and their applications is provided throughout this document. However, in summary, safety-related systems in the connected vehicle environment will likely be based on dedicated short range communications (DSRC). Non-safety applications may be based on different types of wireless technology.
Dedicated short-range communications (DSRC) is an open-source protocol for wireless communication, similar in some respects to Wi-Fi. While Wi-Fi is used mainly for wireless local area networks, DSRC is intended for highly secure, high-speed wireless communication between vehicles and the infrastructure.
The key functional attributes of DSRC are as follows:
  • Low latency: The delays involved in opening and closing a connection are very short—on the order of 0.02 seconds.
  • Limited interference: DSRC is very robust in the face of radio interference. Also, its short range (~1000 m) limits the chance of interference from distant sources. Additionally, DSRC is protected by the Federal Communications Commission (FCC) for transportation applications. Although purely commercial convenience applications are welcome, transportation safety applications take precedence.
  • Strong performance during adverse weather conditions.
In 2004, the FCC dedicated 75 MHz of bandwidth at 5.9 GHz to be used for vehicle safety and other mobility applications. DSRC operates in this band and has been developed for more than a decade by a range of stakeholders including automakers, electronics manufacturers, State transportation departments, and the Federal Government. Most work on DSRC has focused on active safety-crash avoidance using driver alerts based on sophisticated sensing and vehicle communications.
The development of the Connected Vehicle Program envisions leveraging this wireless connectivity to serve the public good in a number of ways:
  • Highway crashes can be dramatically reduced when vehicles can sense and communicate the events and hazards around them.
  • Mobility can be improved when drivers, transit riders, and freight managers have access to up-to-date, accurate, and comprehensive information on travel conditions and options; and it can be improved when system operators, including roadway agencies, public transportation providers, and port and terminal operators, have actionable information and the tools to affect the performance of the transportation system in real-time.
  • Transportation system management and operations can be enhanced when system operators can continuously monitor the status and direct the various assets under their control.
  • Environmental impacts of vehicles and travel can be reduced when travelers can make informed decisions about modes and routes, and when vehicles can communicate with the infrastructure to enhance fuel efficiency by avoiding unnecessary stops.
The vision of a national, multimodal transportation system in which there is connectivity between all types of vehicles, the infrastructure, and other mobile devices requires the participation of a broad community of stakeholders. Federal, State, and local transportation agencies; car, truck and bus manufacturers; telecommunications providers, consumer electronics manufacturers, and researchers must come together to design, develop, build, and deploy the technologies, applications, systems, and policy frameworks that will enable the connected vehicle environment. This presents a unique approach and challenge in the history of the nation's transportation system.
The effort involved in drawing together agencies, organizations, and companies from across the public and private sectors to undertake the necessary development and make the required investments is significant. The questions must therefore be asked: Why is this initiative so important, and how will the connected vehicle environment provide benefits? Significant potential benefits are expected to accrue in a number of areas.

Highway Safety – According to the National Highway Traffic Safety Administration (NHTSA) motor vehicle crashes accounted for 32,885 deaths in 2011,2 and they are the leading cause of death for Americans between the ages of 5 and 44, according to the Centers for Disease Control.3 The application of connected vehicle technologies is expected to offer some of the most promising, near-term opportunities for crash reductions. Research conducted by the Volpe National Transportation Systems Center for NHTSA found that deployment of connected vehicle systems and the combined use of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) applications have the potential to address 81 percent of unimpaired driver crashes in all vehicle types (i.e., cars and heavy vehicles).4 Table 1 presents a breakdown of the potential crash benefits identified in this study based on 2005-2008 General Estimates System crash databases.

Authored by Christopher Hill, Ph.D., Senior Associate, Booz Allen Hamilton, Washington, DC, USA
 楼主| 发表于 2015-7-12 01:58:58 | 显示全部楼层

Module 13: Connected Vehicles

Table 1. Estimated Annual Frequency of Crashes that Would Potentially Be Addressed by Connected Vehicle Safety Applications4
V2V systems potentially address:
      
  • 4,409,000 police-reported (PR) or 79 percent of all vehicle target crashes annually;
  • 4,336,000 PR or 81 percent of all light-vehicle target crashes annually; and
  • 267,000 PR or 71 percent of all heavy-truck target crashes annually.
V2I systems potentially address:
      
  • 1,465,000 PR or 26 percent of all-vehicle target crashes annually;
  • 1,431,000 PR or 27 percent of all light-vehicle target crashes annually; and
  • 55,000 PR or 15 percent of all heavy-truck target crashes annually.
Combined V2V and V2I systems potentially address:
      
  • 4,503,000 PR or 81 percent of all-vehicle target crashes annually;
  • 4,417,000 PR or 83 percent of all light-vehicle target crashes annually; and
  • 272,000 PR or 72 percent of all heavy-truck target crashes annually.

Traffic Congestion – the Urban Mobility Report prepared by the Texas A&M Transportation Institute5 indicates that congestion in 439 urban areas during 2010 accounted for 4.8 billion hours of extra time and 1.9 billion gallons of wasted fuel, at a cost of $101 billion annually. The cost to the average commuter was $713 in 2010. While there is no comprehensive analysis of the potential impacts of connected vehicle systems on urban congestion, it can be assumed that the focus of certain applications on reducing travel delays, such as reducing congestion by mitigating traffic incidents, will ensure that benefits will accrue in this area.

Vehicle Emissions – Vehicle internal combustion engines produce emissions that include pollutants and greenhouse gases.6 The principal pollutants of nitrous oxides, Sulfur oxides, Carbon monoxide, and particulate matter are among the causes of pulmonary diseases and premature death. Data suggest that children are especially vulnerable to air-quality-induced asthma; a leading cause of hospitalization of children according to the Centers for Disease Control and Prevention.7 Greenhouse gases (GHGs) are not as directly harmful as pollutants, but could contribute significantly to climate change. Chief among the GHGs is carbon dioxide; others are methane and nitrous oxide. Reduction of pollutants and GHGs produced by surface transportation through reductions in fuel consumption, idling, and vehicle miles of travel is a major goal of some connected vehicle applications.
It is important to recognize that the connected vehicle initiative described in this module is almost exclusively focused on a program led by USDOT in partnership with State and local transportation agencies and various vehicle manufacturers. This Federally-led program is driven by the safety, mobility, and environmental needs identified above. The term "connected vehicle," however, has gained a broader usage in the media and within the information technology domain of the automotive industry. In these cases, the use of the term is driven by the information and communications technology industry (comprising entities such as Microsoft, Google, wireless Internet providers, etc.) and the carmakers, and it is focused on bringing 4G/Long Term Environment (LTE)-based Internet and Web-based services into cars to support infotainment and convenience applications and services. This usage of the term "connected vehicles" is not addressed in this module.

Historical Context – Getting to Today's Connected Vehicle ProgramThe current vision and approach for developing the connected vehicle environment has emerged from more than a decade of research. In the early 2000s, it became clear to those engaged in Intelligent Transportation Systems (ITS) research that the interaction between vehicles and between vehicles and the roadway infrastructure had significant potential to address highway safety and other challenging transportation problems. In 2003, USDOT, in partnership with other entities including the American Association of State Highway and Transportation Officials (AASHTO) and a number of light-duty vehicle manufacturers, initiated the Vehicle Infrastructure Integration (VII) program to conduct research and move ultimately to deployment.
As originally envisioned, the most dramatic safety gains were expected to come from wireless communications between vehicles, but, at the time, it was believed that the maximum safety benefits would require all vehicles (cars, trucks, and buses) to have radio devices installed to provide the necessary V2V communications capabilities.8 However, it was further recognized that achieving this goal could take between 15 to 20 years for the vehicle fleet to turn over so that a sufficient number of vehicles would be equipped with the V2V technology to begin yielding the projected benefits.
It was therefore believed that an alternative technical approach was needed. In-vehicle devices communicating with roadside infrastructure was seen as a way to achieve safety benefits more quickly, and a VII program based on a nationwide deployment of roadside infrastructure to support communications with vehicles was adopted.
An initial technical concept for the VII program was comprehensively documented in a Concept of Operations published by USDOT in 2006.9 This early approach called for vehicles manufactured in the United States to be equipped with on-board equipment (OBE): a communications device, a positioning device, a processing platform, and application software. The OBEs would exchange data with road side equipment (RSE), which would be deployed along major highways and at signalized intersections in metropolitan areas throughout the United States. The OBEs would also be required to communicate with other OBEs for V2V data exchange. A nationwide communications network would support the data flow among users and vehicles.
Both V2V and V2I communications within the VII program required a DSRC radio. The FCC, in response to a petition from the transportation community, allocated radio spectrum around 5.9 GHz for transportation safety applications.10 This action provided a key technical resource for the ultimate deployment of the VII system. Although the spectrum was allocated for safety purposes, it allowed unused bandwidth to be available for other transportation mobility or convenience applications.
At this point in the VII program, a set of key questions on the technical feasibility of the VII concept emerged. These questions sought to validate assumptions that an initial deployment of a V2I-based solution would be feasible and would generate benefits, while V2V capabilities gradually became available through the increasing availability of devices in vehicles. Questions also existed regarding the suitability of DSRC communications for both safety and nonsafety applications. To address these questions, USDOT conducted a proof-of-concept (POC) test between 2008 and 2009 on specially designed test beds in Oakland County, MI, and Palo Alto, CA. The POC tests were limited in scope—comprising fewer than 30 light duty vehicles, using draft DSRC standards, and focusing on partially-developed applications—but they proved that the basic technical concept would work.
In 2008, another important change took place. While DSRC remained the only communications medium considered suitable for active safety applications, other communications media, such as cellular and Wi-Fi, were viewed as appropriate for connected vehicle mobility, environmental, and convenience applications. DSRC is the communications medium of choice for active safety systems because of its designated licensed bandwidth, primarily allocated for vehicle safety applications by the FCC Report and Order. DSRC is also the only short-range wireless technology that provides a fast network acquisition, low latency, high-reliability communications link; the ability to work with vehicles operating at high speeds; the ability to prioritize safety messages; tolerance to multipath transmissions typical of roadway environments; performance that is immune to extreme weather conditions (rain, fog, snow, etc.); and the protection of security and privacy of messages. Between 2010 and 2011, the Federal VII evolved into the current Connected Vehicle Program.

The Connected Vehicle Program TodayWith basic technical feasibility determined, the Connected Vehicle Program has moved to addressing a set of key strategic challenges:11 To resolve remaining technical, policy, institutional, and funding challenges;
  • To conduct testing to determine the actual benefits of applications;
  • To determine whether overall benefits are sufficient to warrant implementation, and, if so, how the systems would be implemented; and
  • To address issues of public acceptance such as maintaining user privacy and whether systems in vehicles are effective, safe, and easy to use.
A USDOT video on the use of connected vehicle test beds for ongoing research can be found at www.its.dot.gov/library/media/8testbed.htm.


 楼主| 发表于 2015-7-12 02:00:22 | 显示全部楼层

Connected Vehicle Applications

Broadly, the partners in the Connected Vehicle Program are conducting research on the applications, technologies, policy and institutional issues, and implementation strategies that are described in the following sections. Central among the research that is currently being undertaken is a determination of the potential benefits of the connected vehicle system and the evaluation of driver acceptance of vehicle-based safety systems. This component of the research program will provide factual evidence needed to support a 2013 NHTSA decision on the deployment of core connected vehicle technologies for light vehicles and a similar 2014 decision for heavy vehicles by the Federal Motor Carrier Safety Administration (FMCSA). In addition research is underway to describe both the technical details and the policy and business issues associated with creating and operating one or more security credential management system (SCMS) entities to support the deployment of V2V safety applications in motor vehicles and other devices.
The Connected Vehicle Safety Pilot Program is a scientific research initiative to make a real-world implementation of connected vehicle safety technologies, applications, and systems using everyday drivers. The effort, which began in 2011, will test performance, evaluate human factors and usability, observe policies and processes, and collect the empirical data needed to present a more accurate and  detailed understanding of the potential safety benefits of these technologies.12 This empirical data will be critical to supporting the 2013 NHTSA decision on vehicle communications for safety.
The Safety Pilot Program includes two components: the Safety Pilot Driver Clinics and the Safety Pilot Model Deployment.

Safety Pilot Driver Clinics
    Between August 2011 and early 2012, the clinics began to test V2V safety applications with ordinary drivers in controlled roadway situations. The evaluations, conducted by the Crash Avoidance Metrics Partnership, a consortium of light- vehicle manufacturers, explored driver reactions to these safety applications in a variety of light-duty vehicles and under various test conditions. The clinics were conducted at six sites across the United States. The clinics were to help determine whether the new applications create any unnecessary distractions for motorists. Approximately 100 drivers participated in each driver clinic.

Safety Pilot Model Deployment
    To continue the data collection under real-world conditions, a test site in Ann Arbor, MI, has been selected to host approximately 3,000 vehicles equipped with V2V devices. The goal is to create a highly concentrated connected vehicle communications environment. The devices to be tested include embedded and aftermarket devices and a simple communications beacon. All of these devices emit a basic safety message 10 times per second, which forms the basic data stream that other in-vehicle devices will use to determine when a potential conflict exists. When this data is further combined with the vehicle's own data, it creates a highly accurate data set that is the foundation for cooperative, crash avoidance safety applications. Using a mix of cars, trucks, and transit vehicles, the Safety Pilot Model Deployment will create test data sets for determining the technologies' effectiveness at reducing crashes. These capabilities will also be extended to a limited set of V2I applications. Supported by a diverse team of industry, public agencies, and academia, the Model Deployment runs from the summer of 2012 to the summer of 2013. An online video describing the Safety Pilot Model Deployment can be found at http://safetypilot.umtri.umich.edu/index.php?content=video.

Connected Vehicle ApplicationsHistorical Context on Connected Vehicle ApplicationsThe definition of key applications of VII data was a significant activity from the very beginning of the initiative. The VII Concept of Operations13 identified a very comprehensive list of potential applications that would be developed by either the public sector or the automakers (see Table 2).
Table 2. Initial List of Potential VII Applications13
Local Use CasesNetwork Use Cases
        
  • Infrastructure-based Signalized Intersection Violation Warning
  • infrastructure-based Signalized Intersection Turn Conflict Warning
  • Vehicle-based Signafized Intersection Violation Warning
  • Infrastructure-based Curve Warning
  • Highway Rail Intersection-
  • Emergency Vehicle Preemption at Traffic Signal
  • Emergency Vehicle at Scene Warning
  • Transit Vehicle Priority at Traffic Signal
  • Stop Sign Violation Warning
  • Stop Sign Movement Assistance
  • Pedestrian Crossing Information at Designated Intersections
  • Approaching Emergency Vehicle Warning
  • Post Crash Warning
  • Low Parking Structure Warning
  • Wrong Way Driver Warning
  • Low Bridge Warning
  • Emergency Electronic Brake Lights
  • Visibility Enhancer
  • Cooperative Vehicle-Highway Automation System
  • Pre-Crash Sensing
  • Free-Flow Tolling
  • Cooperative Glare Reduction
  • Adaptive Headlight Aiming
  • Adaptive Drivetrain Management
  • GPS Correction
  • In-vehicle Signing
    • Work Zone Warning
    • Highway/Rail Intersection Warning
            
  • Vehicle-to-Vehicle
    • Cooperative Forward Collision Warning
    • Cooperative Adaptive Cruise Control
    • Blind Spot Warning
    • Blind Merge Warning
    • Highway Merge Assistant
    • Cooperative Collision Warning
    • Lane Change Warning
    • Road Condition Warning
    • Road Feature Notification
            
  • Rollover Warning (see curve warning above)
  • Instant Messaging
  • Driver's Daily Log
  • Safety Event Recorder
  • Icy Bridge Warning
  • Lane Departure-inadvertent
  • Emergency Vehicle Initiated Traffic Pattern Change
  • Parking Spot Locator
  • Speed Limit Assistant
        
  • Vehicles as Probes
    • Traffic information
    • Weather data
    • Road surface conditions data
            
  • Crash Data to Public Service Answering Point
  • Crash Data to Transportation Operations Center
  • Advance Warning Information to Vehicles
  • Electronic Payment
    • Toll collection
    • Gas payment
    • Drive-thru payment
    • Parking lot payment
            
  • Public Sector Vehicle Fleet/Mobile Device Asset Management
  • Commercial Vehicle Electronic Clearance
  • Commercial Vehicle Safety Data
  • Commercial Vehicle Advisory
  • Unique Commercial Vehicle Fleet Management
  • Commercial Vehicle Truck Stop Data Transfer
  • Low Bridge Alternate Routing
  • Weigh Station Clearance
  • Cargo Tracking
  • Approaching Emergency Vehicle Warning
  • Emergency Vehicle Signal Preemption
  • SOS Services
  • Post Crash Warning
  • In-vehicle AMBER Alert
  • Safety Recall
  • Just-in-Time Repair Notification
  • Visibility Enhancer
  • Cooperative Vehicle-Highway Automation System
  • Cooperative Adaptive Cruise Control
  • Road Condition Warning
  • Intelligent On-Ramp Metering
  • Intelligent Traffic Flow
  • Adaptive Headlight Aiming
  • Adaptive Drivetrain Management
  • Enhanced Route Guidance and Navigation
    • Point of Interest Notification
    • Food Discovery and payment
    • Map Downloads and Updates
    • Location-based shopping/advertising
    • In-route Hotel Reservation
            
  • Traffic Information
    • Work Zone Warning
    • Incident
    • Travel Time
            
  • Off-Board Navigation
  • Mainline Screening
  • On-Board Safety Data Transfer
  • Vehicle Safety Inspection
  • Transit Vehicle Data Transfer (gate)
  • Transit Vehicle Signal Priority
  • Emergency Vehicle Video Relay
  • Transit Vehicle Data Transfer (yard)
  • Transit Vehicle Refueling
  • Download Data to Support Public Transportation
  • Access Control
  • Data Transfer
    • Diagnostic Data
    • Repair-Service Record
    • Vehicle Computer Program Updates
    • Map Data Updates
    • Rental Car Processing
    • Video/Movie downloads
    • Media Downloads
    • Internet Audio/video
            
  • Locomotive Fuel Monitoring
  • Locomotive Data Transfer
  • Border Crossing Management
  • Stolen Vehicle Tracking
A refined list of applications was identified for evaluation through the POC test.14 These applications were intended to be developed in prototype form to test basic, technical functionality of the VII system; however, the testing did not demonstrate the effectiveness or end user value of the identified applications. Ultimately, given the limitations regarding the scope of the POC, testing focused on evaluating message exchange between partially-developed applications.15
 楼主| 发表于 2015-7-12 02:09:31 | 显示全部楼层

Connected vehicle safety applications

Connected Vehicle Application Development TodayApplications are the most visible part of the connected vehicle environment. The applications allow the connected vehicle systems and technologies to deliver services and benefits to a variety of users. In the current Connected Vehicle Program, the applications are divided into three broad categories:
  • Safety applications;
  • Mobility applications; and
  • Environmental applications.
Significant research, which will include a number of prototyping efforts, is underway in USDOT's Connected Vehicle Program within the ITS Research Program. This is described in the following sections.

Connected vehicle safety applications are designed to increase situational awareness and reduce or eliminate crashes through V2V and V2I data communications. Broadly speaking, these applications will support driver advisories, driver warnings, and potentially, in the longer term, vehicle or infrastructure controls.

Vehicle-to-Vehicle Communications for Safety is the wireless exchange of data between nearby vehicles to achieve safety improvements. By exchanging anonymous, vehicle-based position, speed, and location data, V2V communications enable a vehicle to sense threats and hazards with an awareness of the position of vehicles relative to each other; calculate risk; issue driver advisories or warnings; or other actions to avoid or mitigate crashes. Central to this approach is the V2V communications of a basic safety message (BSM). This message can be derived from vehicle-based sensor data, where the location and speed data is derived from the vehicle's computer and is combined with other data such as latitude, longitude, or angle to produce a richer, more detailed situational awareness of the position of other vehicles.
The vision for V2V safety applications is that each vehicle on the roadway (inclusive of automobiles, trucks, buses, motor coaches, and motorcycles) will eventually be able to communicate with other vehicles, and that this rich set of data and communications will support a new generation of active safety applications and  systems.
Since 2002, USDOT has been conducting research with automotive manufacturers to assess the feasibility of developing effective crash avoidance systems that utilize V2V  communications. Applications that address the most critical crash scenarios have been demonstrated, including:
  • Emergency Brake Light Warning;
  • Forward Collision Warning;
  • Intersection Movement Assist;
  • Blind Spot and Lane Change Warning;
  • Do Not Pass Warning; and
  • Control Loss Warning.
The development of these applications was used to identify the functional and performance requirements for the underlying technologies, such as positioning and communications. Additional development work is needed to address more complex crash scenarios, such as head-on collision avoidance, intersection collision avoidance, pedestrian crash warning, and extending the capabilities to prevent motorcycle crashes. These capabilities may be achieved by providing V2V communications systems that complement other vehicle-based safety technologies that have been developed by the automotive industry and are becoming available to consumers.

V2I communications for safety is the wireless exchange of critical safety and operational data between vehicles and highway infrastructure, intended primarily to avoid or mitigate motor vehicle crashes. V2I safety applications transform roadway infrastructure equipment by incorporating algorithms that use data exchanged between vehicles and infrastructure elements to perform calculations that recognize high-risk situations in advance, resulting in driver alerts and warnings through specific countermeasures. One particularly important advance is the ability for traffic signal systems to communicate the signal phase and timing (SPAT) information to the vehicle to support the delivery of active safety advisories and warnings to drivers. Early implementation of SPAT-based applications may enable near-term benefits from V2I communications in the form of reduced crashes such as red-light-running collisions.
V2I safety applications may provide a graduated spectrum of safety solutions from in-vehicle information and advisories to in-vehicle driver warnings of imminent crash scenarios. The USDOT Connected Vehicle Research Program is examining a number of potential V2I safety applications.16

The Red Light Warning application uses SPAT, geometric intersection description (GID), and global positioning system (GPS) correction information broadcast between an RSE and OBE to determine if the vehicle is in danger of violating a red light. Traffic signal logic may be used to determine if extension of an all-red phase is warranted to prevent crashes. The concept is illustrated in Figure 1.
Figure 1. Red Light Warning Concept
(Extended Text Description: In this diagram, a car is depicted approaching a four-way intersection. There are two red arrows one on top of the other, pointing to the opposite side of the intersection. On that opposite side, there is a traffic light showing a red light. This traffic light is labeled "Driver Infrastructure Interface (DII) (dynamic signal)." To the right of the traffic light, just off the intersection, there is a picture of a gray box labeled RSE/SPAT. To the right of the vehicle, there is a rectangular text box pointing to the vehicle. Inside the bubble is red and white triangle with a red exclamation point inside. To the right of the triangle is a traffic light with a red. The text box is labeled "Driver Vehicle Interface (DVI) Example (static alert message).")
Source: USDOT.

The Curve Speed Warning application uses geometric and weather information in an in-vehicle device to determine the appropriate speed for that particular vehicle. Warnings can be tailored to the specific vehicle performance characteristics. Figure 2 illustrates the concept.
Figure 2. Curve Speed Warning Concept
(Extended Text Description: In this diagram, a car is depicted driving on a curved road. The two red arrows pointing up in front of the vehicle indicate that the car is approaching the curve. To the right of the curve, there is a dark rectangular box, with three blue arcs being emitted from the box. A rectangular text box is on the right side of the vehicle, pointing to the car. Inside the text box is a red and white triangular warning sign with a red exclamation point in the center. The right of this sign is an icon showing a vehicle approaching a bend in the road and swerving tire tracks behind it. A red arrow goes from the car off the road, away from the curve. Underneath is says "Driver Vehicle Interface (DVI) Example.")
Source: USDOT.
The Stop Sign Gap Assist application uses roadside sensors to detect oncoming traffic and an RSE to broadcast traffic status to an in-vehicle device that will determine if there is any danger to a vehicle on the minor leg. The concept is illustrated in Figure 3.
Figure 3. Stop Sign Gap Assist Concept
(Extended Text Description: In this diagram, a car is depicted waiting at the lower intersection in the right lane on a two-lane cross street (labeled as a Minor Road) and a four-lane main roadway (labeled as a Major Road). A black arrow points ahead to show the car will travel forward across the intersection. There is a pull out graphic box with an arrow pointing at the car. The pullout box is labeled: Driver Vehicle Interface (DVI) Example, with two black horizontal arrows pointing in opposite directions and a black line intersecting the arrow perpendicularly at the center. A red rectangle is in the black arrow to the left of the intersecting line on the lower arrow and another red rectangle in the upper black arrow to the right of the intersecting line. The words "Divided Highway" appear below the lower arrow at the point of the intersecting line. An icon of a white arrow dividing to point ahead and curving to the right appears in the lower intersection point, with a red circle with a diagonal line through it. An icon of a white arrow dividing to point ahead and curving to the left appears in the upper intersection point with a red circle with a diagonal line through it.


 楼主| 发表于 2015-7-12 02:11:14 | 显示全部楼层

Railroad Crossing Violation Warning

To the right of the car at the intersection is an icon of a stop sign, and to the left is an icon of a black rectangle labeled RSE with three curved blue lines emanating from it. To the left of the RSE, a yellow dot has two diagonal dotted lines coming from it. The upper dotted line goes across the lower two lanes of traffic on the Major Roadway to about the median point. The lower dotted line goes to the lower edge of the closest lane of traffic. A slightly curved dotted line connects the ends of these two diagonal dotted lines. Another car is depicted as traveling in the inner lane on the Major Roadway with a red arrow pointing to the right. In the opposing lanes of traffic and on the right side of the intersection, another car is depicted, traveling in the outer lane, with a red arrow pointing to the left. Across from the car waiting at the intersection, the opposite side of the intersection has a stop sign icon to the right, and a small version of the Driver Vehicle Interface pullout box described above. To the right of that box, there is a yellow dot with two diagonal dotted lines coming from it. The lower dotted line cross the two nearest lanes of traffic, ending near the median point. The upper dotted line ends near the edge of the upper lane of traffic. A curved dotted line connects the two ends of the diagonal dotted lines (and the curved line crosses over the icon of the car traveling in the outer lane. There is a black arrow pointing from the small version of the DVI box to a larger version of the box, labeled Driver Infrastructure Interface (DII) Example.)Source: USDOT.

The Railroad Crossing Violation Warning application uses roadside equipment to provide a connection from existing train detection equipment via wireless communications to an in-vehicle device to determine the probability of a vehicle conflict with an approaching train. The in-vehicle device issues an alert or warning to the driver. The concept is illustrated in Figure 4.
Figure 4. Railroad Crossing Violation Warning Concept
(Extended Text Description: This diagram depicts a railroad intersection with a two-lane road. A railroad is depicted running horizontally across the upper portion of the diagram. The two-lane road intersects through the center of the railroad. At the top of the diagram, the diagram depicts a railroad crossing sign, the lane divide and the horizontal stop line. On the lower part of the diagram, under the railroad and the intersection, there is a black rectangle labeled RSE to the lower left of the intersection. On the lower right of the intersection is a railroad crossing sign icon and the words "Driver Infrastructure Interface (DII) (dynamic signal). The road has a dotted line through the center and a stop line. There is a red starburst labeled Warning on the left side of the road. There is a car depicted in the right lane, positioning well before the black stop line, just after the RXR pavement marking on the roadway. To the left of the RXR pavement marking, there is a yellow starburst labeled Alert. There is a black arrow pointing to the car from a pull out box. Inside the box is a Caution symbol (red triangle with exclamation point at the center) and a RXR symbol (a yellow circle with a black X and two Rs on each side). To the side of the box are the words "Driver Vehicle Interface (DVI) Example (static alert message). To the right of the RXR pavement marking on the right lane is a RXR road sign and the words "Driver Infrastructure Interface (DII) (static signal and pavement markings).)
Source: USDOT.
The Spot Weather Impact Warning application uses a connection from a traffic management center (TMC) and other weather data collection sites to an RSE to broadcast weather events and locations to vehicles in real-time. An in-vehicle device then issues an alert or warning to driver. Figure 5 illustrates the concept.
Figure 5. Spot Weather Impact Warning Concept
(Extended Text Description: This is a diagram of a car driving up a straight road. Ahead and to the left of the vehicle are pictures of an RWIS and RSE systems next to one another. The RWIS is represented by an image of a pole with many devices installed along the length of the pole. The RSE system is represented by a gray box with blue arcs coming from the bottom of the picture. Ahead of the vehicle to the right, there is a diamond yellow street sign. With a warning light above and below the diamond, the sign reads "FOG." This sign is labeled "Driver Infrastructure Interface (DII) (static or dynamic sign)". Pointing to the vehicle are three separate text boxes containing Driver Vehicle Interface (DVI) examples. Each of these boxes contains a red and white triangular warning sign with an exclamation point in the middle. Next to each warning sign is a different image per box. The top image is of a yellow diamond road sign that says "Fog." To the right of the warning image in the second box is a snowflake. The right of the warning sign in the third text box is a picture of a car with swerving tire marks behind it.)
Source: USDOT.
The Oversize Vehicle Warning application uses a connection from an RSE to infrastructure-based detectors to broadcast bridge and tunnel dimensions and the dimensions of a detected vehicle if the vehicle is oversize. The application either issues an alert to the driver to take an alternate route or provides a warning to stop. This concept is illustrated in Figure 6.
Figure 6. Oversize Vehicle Warning Concept
(Extended Text Description: In this diagram, a semi-trailer is depicted in the right lane of a two-lane roadway heading toward an intersection with another two-lane roadway. There is a box with a Caution symbol (red triangle with exclamation point at the center) and oversize vehicle warning symbol (the rear of a semi-trailer on a black road with a yellow diamond shape with 12'6" and arrows pointing up and down). The box is labeled Driver Vehicle Interface (DVI) Example and points to the depiction of the semi-trailer on the road. There is a yellow diamond-shaped sign marked 12'6" with arrows pointing up and down. The words Driver Infrastructure Interface (DII) (static or dynamic sign) is at the left with an arrow that points to the yellow sign.  At the left side of the lower intersection is a black rectangle labeled RSE with three curved lines emanating from it toward the semi-trailer. On the right side of the intersection is an orange dot with two diagonal dotted lines: the upper dotted line extends to the yellow height sign on the opposite of the road; the lower dotted line extends to the edge of the outer left lane. There is a curved dotted line that connects the ends of both diagonal dotted lines.)
Source: USDOT.

 楼主| 发表于 2015-7-12 02:15:06 | 显示全部楼层

Connected vehicle mobility applications

The Reduced Speed or Work Zone Warning application uses an RSE connection to broadcast speed limit information and work zone information to an in-vehicle device that issues an alert to the driver to reduce speed, change lanes, or prepare to stop. The concept is illustrated in Figure 7.
Figure 7. Reduced Speed or Work Zone Warning Concept
(Extended Text Description: This diagram shows a vehicle traveling up a straight road. Ahead of the vehicle are four orange circles arranged diagonally to close the lane and merge traffic. To the right is a Driver Infrastructure Interface (DII) (static or dynamic sign). In this case, the sign is black and orange with three arrow heads pointing left to communicate a need to change lanes. Ahead of the vehicle on the left is a Portable RSE, indicated by a gray box with blue arcs coming from the bottom. Pointing to the vehicle are two text boxes with examples of a Driver Vehicle Interface (DVI). Both text boxes contain a red and white warning sign with an exclamation point. To the right of the warning sign in the top box, there is an orange diamond sign with the lane-ending/merge symbol. To the right of the warning sign in the lower box, there is a yellow diamond sign with a white rectangular sign that says "Speed Limit 45".)
Source: USDOT.

Connected vehicle mobility applications will provide an interconnected, data-rich travel environment. In the connected vehicle environment real-time data will be captured from equipment located on board cars, trucks, and buses and from the network of connected vehicle field infrastructure. These data will be transmitted wirelessly and used by transportation managers in a wide range of applications to manage the transportation system for optimum performance.
USDOT's Dynamic Mobility Applications (DMA) program is exploring a number of these applications,17 specifically focusing on those that will improve mobility by reducing delays and congestion. Figure 8 illustrates USDOT's bundling of DMAs.

Figure 8. Bundling of USDOT Dynamic Mobility Applications
(Extended Text Description: Relevant author information for this diagram: This is a diagram illustrating how the USDOT has bundled the dynamic mobility applications for various transportation system environments. The five major environments identified by the USDOT are represented by three serially overlapping orange circles. These environments include: Arterial Data Environments, Freeway Data Environments, Regional (INFO) Data Environments, and Corridor (Control) Data Environments. Connected to each of these environments by dotted blue lines are programs that fall into the environment category. Programs are shown as hexagons in either green or yellow. Green indicates the program is funded. Yellow indicates the program is supported but not funded.)
Source: www.its.dot.gov/press/2011/mobility_app.htm [last accessed January 15, 2013].

Key application bundles are described below:
Enable Advanced Traveler Information Systems (EnableATIS) is intended to provide a desired end state for a traveler information network, with a focus on multimodal integration, facilitated sharing of data, end-to-end trip perspectives, and use of analytics and logic to generate predictive information specific to users.
EnableATIS envisions a future framework that is enabled with a pool of real-time data from connected vehicles, public and private systems, and user-generated content. EnableATIS has the potential to transform how traveler information is gathered and shared and how agencies are able to use information to better manage and balance the transportation networks. It also has the potential to transform the way users obtain information about every detail of their trip. New forms of data may provide the potential for highly-personalized, intuitive, and predictive traveler information services well beyond what is experienced today.
This bundle does not define specific future applications. USDOT recognizes that there are existing businesses providing traveler information data and services. Therefore, a laissez-faire approach where build-out and enhancement of traveler information services occurs over time but with only limited influence from USDOT may be appropriate. Alternatively, the desired end-state may be a robust, multimodal, multisource traveler information environment that leverages new data sources and generates transformative uses of that information. These uses may include applications that benefit travelers as well as those that support system operations and management by agencies. This approach may require a more proactive development approach including a stronger role for USDOT.

Freight Advanced Traveler Information System (FRATIS) is a bundle of applications that provide freight-specific dynamic travel planning and performance information, or that optimize drayage operations so that load movements are coordinated between freight facilities to reduce empty-load trips. Currently, freight routing, scheduling, and dispatch decisions may be made in an ad-hoc fashion, with inadequate data to make fully informed decisions. This is particularly the case for small to medium-sized firms that may not be able to invest in information technologies and systems at the level of larger firms. FRATIS seeks to integrate existing data sources in a manner oriented toward freight's distinct operational characteristics and by leveraging connected vehicle data. A video describing freight-specific needs can be found at http://vimeo.com/59703030. Further information on this subject can also be found in Module 6 "Freight, Intermodal, and Commercial Vehicle Operations."

Two separate applications comprise FRATIS in the USDOT program:
  • Freight Specific Dynamic Travel Planning and Performance. This application seeks to include all of the traveler information, dynamic routing, and performance monitoring elements that freight users need. It is expected that this application will leverage existing data in the public domain, as well as emerging private sector applications, to provide benefits to both sectors. Data may include real-time freeway and key arterial speeds and volumes, incident information, road closure information, route restrictions, bridge heights, truck parking availability, weather data, and real-time speed data from fleet management systems.
  • Drayage Optimization This application seeks to combine container load matching and freight information exchange systems to fully optimize drayage operations, thereby minimizing bobtails (i.e., a tractor-trailer truck running without a trailer) and wasted miles. This application is also intended to spread out truck arrivals at intermodal terminals throughout the day.

 楼主| 发表于 2015-7-12 02:19:49 | 显示全部楼层
Figure 9 illustrates the FRATIS high-level design concept.

Figure 9. Proposed High-Level System Concept for FRATIS
Figure 9. Proposed High-Level System Concept for FRATIS. Please see the Extended Text Description below.

(Extended Text Description: This figure illustrates the proposed, high-level system concept for the FRATIS application bundle. The image is of a circle in the middle of a number of boxes surrounding the circle. The circle represents the data integration between public and private sectors, ideally as part of a regional public-private partnership. This source of integrated data will feed a number of uses which are represented by the boxes. They include: Regional ITS Data, Third-Party Truck Specific Movement Data, Intermodal Terminal Data, the FRATIS Basic Applications, the FRATIS Commercial Applications, and Future U.S. DOT Connected Vehicle Data needs. The integrated data source or sources feed these boxes through application program interfaces or APIs. This is represented by bi-directional arrows between the circle and the boxes. The bi-directional nature means that the organizations and applications that request and use the data are also sending data back to the circle or the integrated source of data. At the bottom of this graphic is an additional link from the integrated data source to an IT Toolkit which contains all of the FRATIS documentation that has formed the basis of this design. These documents include a Concept of Operations, Architecture, Use Cases, APIs, Web and other applications, testing best practices guide, performance criteria, and business plan. At this time, these documents, or tools, are mostly still under development but will be available with the release of the FRATIS application bundle.)

Source: www.its.dot.gov/dma/dma_development.htm [last accessed January 15, 2013].

It is important to note that additional research related to commercial motor vehicles is being undertaken within the Smart Roadside Initiative (SRI).18 The current commercial vehicle environment consists of numerous Federal, State, regional, and private-sector programs that use a combination of manual, semi-automatic, and advanced technologies. The effectiveness of these programs can be greatly improved by the Smart Roadside concept. The SRI envisions commercial vehicles, motor carriers, enforcement resources, highway facilities, intermodal facilities, toll facilities, and other nodes on the transportation system collecting data for their own purposes and sharing the data seamlessly with the relevant parties. This sharing would improve motor carrier safety, security, operational efficiency, and freight mobility, and to provide for enhanced protection and maintenance of the infrastructure. The SRI can be viewed as a mode-specific instantiation of V2I communications, and so aspects of the SRI vision are being advanced through USDOT's Connected Vehicle Program, with a primary focus on improving the effectiveness of traditional enforcement activities conducted at weigh/inspection stations by moving compliance checks to the roadside. In doing so, enforcement is better able to focus limited resources on vehicles requiring more extensive measurements and inspection.

SRI will develop new capabilities to exchange information among roadside equipment, back office systems, and commercial motor vehicles that are moving at mainline speed. These capabilities will be developed in the following four focus areas:

    Universal Commercial Motor Vehicle Identification provides the capability to identify each vehicle on the road and electronically access credentials and safety information in government and industry databases related to the vehicle, the driver, and the motor carrier. This capability would enable a variety of other capabilities, including the following:
        Electronic Screening/Virtual Weigh Station provides functionality for automatically collecting data on commercial motor vehicle weight, size, and other information to facilitate efficient, high-throughput electronic screening.
        Wireless Roadside Inspections are an enhanced form of electronic screening, which could include functionality to obtain and evaluate carrier, vehicle, and driver information automatically and then issue inspection reports simultaneously to roadside enforcement and motor carriers on vehicles traveling at slow and mainline speeds.
        Truck Parking Programs provide drivers and carriers with a convenient, near real-time approach for accessing information about parking locations, available parking spaces, and other amenities during trips. Work in this area is being conducted through FMCSA's Smart Park research project being conducted in Tennessee, and FHWA's truck parking detection and notification system projects under development and supported through the SAFETEA-LU Section 1305 Program. There are more than $20 million in funds supporting the development of six large projects on I-95 (from Connecticut to North Carolina), I-5 in California; I-81 (in Pennsylvania from Harrisburg to the Maryland state line); I-94 in Michigan; I-94 in Minnesota; and I-94 in Wisconsin.

Upcoming work will focus on an SRI prototype system design and development.

Integrated Dynamic Transit Operations (IDTO) is the bundle of applications that transform transit mobility, operations, and services through the availability of new data sources and communications. USDOT defines the IDTO bundle as the following three applications:

    T-CONNECT is intended to improve rider satisfaction and reduce expected trip time for multimodal travelers by increasing the probability of automatic intermodal or intramodal connections. T-CONNECT will protect transfers between both transit (e.g., bus, subway, and commuter rail) and nontransit (e.g., shared ride) modes, and it will facilitate coordination between multiple agencies to accomplish the tasks. Figure 10 provides an overview of the concept.

Figure 10. T-CONNECT Concept Overview
Figure 10. T-CONNECT Concept Overview. Please see the Extended Text Description below.

(Extended Text Description: This diagram provides an overview of the T-Connect Concept. From the left, an image of a transit van notes the request made by a passenger for a transfer to a separate, outgoing vehicle. The data needed by the outgoing vehicle from the van includes location and operational status. The image shows these data points being sent with the transfer request to an application that routes the request to a multi-modal regional control center which is integrated with a traffic management center. From the control center, the image shows the request being processed and notification sent to the outgoing vehicle with the necessary data on when the van will arrive. If later than anticipated, the outgoing vehicle also receives a notice to hold until the arrival of the van; at which point, the passenger transfers and the outgoing vehicle is allowed to proceed.)

Source: www.its.dot.gov/dma/dma_development.htm [last accessed January 15, 2013].

    T-DISP seeks to expand transportation options by leveraging available services from multiple modes of transportation. Travelers would be able to request a trip via a handheld mobile device, phone, or personal computer and have itineraries containing multiple transportation services (including public transportation modes, private transportation services, shared-ride, walking, and biking) sent to them. T-DISP builds on existing technology systems such as computer-aided dispatch/automatic vehicle location (CAD/AVL) systems and automated scheduling software as well as expanded business and organizational structures that aim to better coordinate transportation services in a region. A physical or virtual central system such as a travel management coordination center (TMCC) would dynamically schedule and dispatch trips.
    D-RIDE is an approach to carpooling in which drivers and riders arrange trips within a relatively short time in advance of departure. Through the D-RIDE application, a person could arrange daily transportation to reach a destination, including those that are not serviced by transit. The D-RIDE system would usually be used on a one-time, trip-by-trip basis, and it would provide drivers and riders with the flexibility of making real-time transportation decisions. The two main goals of the D-RIDE application are to increase the use of nontransit ride-sharing options including carpooling and vanpooling, and to improve the accuracy of vehicle capacity detection for occupancy enforcement and revenue collection on managed lanes.

The Intelligent Network Flow Optimization (INFLO) bundleconsists of applications related to queue warning, speed harmonization, and cooperative adaptive cruise control. It aims to maximize roadway throughput, reduce crashes, and reduce fuel consumption through the use of data drawn from connected vehicles, mobile devices, and the infrastructure.


 楼主| 发表于 2015-7-12 14:28:47 | 显示全部楼层

Multimodal Intelligent Traffic Signal Systems (MMITSS)

Current practices for queue detection and warning and speed harmonization are fundamentally limited by their exclusive reliance upon infrastructure-based detection and warning. A connected vehicle system is both vehicle and infrastructure-based and has the potential to provide a broader and more dynamic set of data and data exchange. These three applications comprise INFLO:
  • Queue Warning (Q-WARN) will warn a vehicle operator about an impending queue backup in time to brake safely, change lanes, or modify the route such that secondary collisions can be minimized or eliminated. Q-WARN is distinct from collision warning, which pertains to events or conditions that require immediate or emergency actions. The Q-WARN application aims to minimize the occurrence and impact of traffic queues by using V2I and V2V communications so that vehicles can automatically broadcast their queue status information (e.g., rapid deceleration, disabled status, lane location) to nearby upstream vehicles and to infrastructure-based central entities (such as a TMC).
  • Dynamic Speed Harmonization (SPD-HARM) is intended to dynamically adjust and coordinate maximum appropriate vehicle speeds in response to downstream congestion, incidents, and weather or road conditions in order to maximize traffic throughput and reduce crashes. A dynamic SPD-HARM system will be successful at managing upstream traffic flow by being able to reliably detect the location, type, and intensity of downstream congestion (or other relevant) conditions; formulate an appropriate response plan (i.e., vehicle speed and/or lane recommendations) for approaching vehicles; and disseminate such information to upstream vehicles readily. The SPD-HARM application will use V2V and V2I communication to detect the precipitating roadway or congestion conditions that might necessitate speed harmonization, to generate the appropriate response plans and speed recommendation strategies for upstream traffic, and to broadcast such recommendations to the affected vehicles.
  • Cooperative Adaptive Cruise Control (CACC) will dynamically and automatically coordinate cruise control speeds among platooning vehicles in order to significantly increase traffic throughput. By tightly coordinating in-platoon vehicle movements, headways among vehicles can be significantly reduced, thus smoothing traffic flow and improving traffic flow stability. The CACC concept represents an evolutionary advancement of conventional cruise control (CCC) systems and adaptive cruise control (ACC) systems by utilizing V2V and V2I communication to automatically synchronize the movements of many vehicles within a platoon. This should be considered a long term research initiative until a better understanding of the technical feasibility, social acceptance, and product liability issues are completed.

Figure 11 illustrates how all three applications used in conjunction can help minimize the impact of a freeway incident on traffic flow.
Figure 11. Combined Q-WARN/SPD-HARM/CACC Illustration
(Extended Text Description: This diagram illustrates the combined Q-WARN/SPD-HARM/CACC process. This is a four-part process. The first part involves the occurrence of a highway collision, which results in queue formation. In the second part or phase, a queue warning message is immediately provided to following vehicles in order to prevent secondary crashes. In the third part, dynamic speed harmonization is initiated for upstream traffic to reduce their speed. In the fourth phase, CACC is initiated for upstream traffic in order to maximize carrying capacity of the road as the crash is cleared.)
Source: USDOT.

The Multimodal Intelligent Traffic Signal Systems (MMITSS) application bundle is the next generation of traffic signal systems that will provide a comprehensive framework to serve all modes of transportation, including general vehicles, transit, emergency vehicles, freight fleets, pedestrians, and bicyclists. The vision for MMITSS is to provide overarching system optimization that accommodates transit and freight signal priority, preemption for emergency vehicles, and pedestrian movements while maximizing overall arterial network performance.

The fundamental logic and operations of the traffic signal controller have not changed in the past 50 years. Most systems today depend on loop detectors or video-based systems at fixed locations to call or extend signal control phases. These detection systems provide basic information such as vehicle count, occupancy, or presence/passage information. Such systems limit the use of advanced logic that could potentially be built into modern signal controllers. Connected vehicle technologies could potentially provide real-time information on vehicle class (e.g., passenger, transit, emergency, or commercial), position, speed, and acceleration on each approach and provide coverage for other users, including pedestrians and cyclists.

The MMITSS applications bundle incorporates the following arterial traffic signal applications:
  • Intelligent Traffic Signal System (ISIG) uses data collected from vehicles through V2V and V2I communications as well as pedestrian and non-motorized travelers to control signals and maximize flows in real time. The ISIG application also plays the role of an overarching system optimization application, accommodating transit or freight signal priority, preemption, and pedestrian movements to maximize overall network performance.
  • Transit Signal Priority (TSP) allows transit agencies to manage service by granting buses priority based on a number of factors, such as schedule adherence or passenger loads. The proposed application provides the ability for transit vehicles to communicate passenger count data, service type, scheduled and actual arrival time, and heading information to roadside equipment via an on-board device.
  • Mobile Accessible Pedestrian Signal System (PED-SIG) integrates information from roadside or intersection sensors and new forms of data from pedestrian-carried mobile devices. Such systems will be used to inform visually impaired pedestrians when to cross and how to remain aligned with the crosswalk.
  • Emergency Vehicle Preemption (PREEMPT) will integrate V2V and V2I communication to account for the needs of multiple emergency vehicles operating simultaneously through the same traffic network.
  • Freight Signal Priority (FSP) provides signal priority near freight facilities based on current and projected freight movements. The goal is to reduce delays and increase travel time reliability for freight traffic, while enhancing safety at key intersections.

The Response, Emergency Staging and Communications, Uniform Management, and Evacuation (R.E.S.C.U.M.E.) bundle of applications will leverage wireless connectivity, center-to-center communications, and center-to-field communications to solve problems faced by emergency management agencies, emergency medical services (EMS), public agencies, and emergency care givers, as well as people requiring assistance.

R.E.S.C.U.M.E. applications are intended to support two broad categories of situation: traffic incidents and mass evacuations. Collectively, the R.E.S.C.U.M.E applications will provide capabilities such as quickly detecting and assessing traffic incidents and their effects on traffic flow; modeling evacuation flows; pushing information to evacuees; and helping emergency responders identify the best available resources and the ways to allocate them in the timeliest manner. Government officials who deal with traffic incidents or conduct evacuations will have a common operational picture, enhanced by greater communication with vehicles and roadside equipment, public safety personnel in the field, and the public itself. Public safety personnel in the field who are increasingly using portable communications devices (such as tablets and smartphones to supplement radios, cell phones, and mobile data terminals) will be able to provide real-time information to operations centers and TMCs which will improve traffic and route guidance during incidents and evacuations.



 楼主| 发表于 2015-7-12 14:32:43 | 显示全部楼层

AERIS Transformative Concepts and Applications

The USDOT defines the R.E.S.C.U.M.E. bundle as the following applications:
  • Incident Scene Pre-Arrival Staging Guidance for Emergency Responders (RESP-STG) provides information to public safety responders while en route to help guide them safely and efficiently to an incident scene. It can also help establish incident work zones that are safe for responders, travelers, and crash victims by providing input regarding routing, staging, and secondary dispatch decisions; staging plans; satellite imagery; GIS data; current weather data; and real-time modeling outputs.
  • Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE) has two components: one warns drivers that are approaching temporary work zones at unsafe speeds or trajectory; the other audibly warns public safety personnel and other officials working in such zones about potential vehicle incursions.
  • Emergency Communications and Evacuation (EVAC) addresses the needs of two different evacuee groups:
    • For those using their own transportation, EVAC provides dynamic route guidance information, current traffic and road conditions, location of available lodging, and location of fuel, food, water, cash machines, and other necessities.
    • For those requiring assistance, EVAC provides information to identify and locate the people most likely to need guidance and assistance, and it identifies existing service providers and other available resources.
      
  • Advanced Automated Crash Notification Relay (AACN–RELAY) applications are anticipated to help transmit a range of data via other vehicles and roadside hot spots that can help to enhance incident response. This information can then be forwarded to a public safety answering point. These data elements may include the following:
    • Data generated through in-vehicle systems that can assist responders, including vehicle location, number of passengers, seat belt usage, airbag status, point of impact, risks inherent with the type of vehicle (e.g., use of alternative fuels), air-bag deployment, delta velocity of vehicles involved in the crash, likelihood of injury, the vehicle's final resting position (e.g., overturned), exact vehicle location (e.g., immediately adjacent to waterway), and infrastructure damage (e.g., bridge support).
    • Relevant medical information and patient history used to expedite lifesaving care.
    • Electronic manifest data collected from commercial vehicles that are involved in incidents, used to identify load contents and hazmat risks.
      

Connected vehicle environmental applications are intended to generate and capture environmentally-relevant, real-time transportation data, and use this data to create actionable information to support environmentally-friendly transportation choices. These applications will also support system users and operators in making decisions about green transportation alternatives or options, thereby reducing the environmental impacts of each trip. Using these applications, travelers may decide to avoid congested routes, take alternate routes, public transit, or reschedule their trip—all of which can make their trip more fuel-efficient and eco-friendly. Data generated from connected vehicle systems can also provide operators with detailed, real-time information on vehicle location, speed, and other operating conditions. This information can be used to improve system operation. On-board equipment may also advise vehicle owners on how to optimize the vehicle's operation and maintenance for maximum fuel efficiency.

Within the USDOT connected vehicle research program, the development of environmental applications is taking place through the Applications for the Environment: Real-Time Information Synthesis (AERIS) program. AERIS has identified six Transformative Concepts19 or bundles of applications. These are identified in Figure 12 and described in the following sections. In some instances the AERIS Transformative Concepts represent the environmental versions of other mobility applications.

Figure 12. AERIS Transformative Concepts and Applications
(Extended Text Description: This diagram illustrates the AERIS Transformative Concepts: Cleaner Air Through Smarter Transportation. A circular logo with a leaf at the center is in the upper left corner. The main part of diagram is a series of components connected via dotted lines and grouped together. The Legend (at the lower left) has the following information: A green hexagon is an AERIS Application; a gray hexagon is Applications Supported with AERIS Data (R&D by Others); a yellow pentagon is Performance Measures; a red hexagon is a Regulatory/ Policy Tool; and a blue hexagon is an Educational Tool. The grouping at the upper right side of the diagram is labeled Eco-Signal Operations and has a grouping of four green hexagons (Eco-Traffic Signal Priority, Connected Eco-Driving, Eco-Approach & Departure at Signalized Int., Eco-Traffic Signal Timing), Regulatory/Policy Tool, Educational Tools and Performance Measures. A dotted line leads to a larger orange circle to the right labeled Arterial Data Environments. Another dotted line leads from the circle to the right to the next grouping, labeled Dynamic Low Emissions Zones, with three green hexagons (Connected Eco-Driving, Dynamic Emissions Pricing, Multi-Modal Traveler Information), Regulatory/Policy Tool, Educational Tools and Performance Measures. There is a dotted line leading down and to the left to an orange circle labeled Freeway Data Environments. A dotted line leads from the circle to a grouping to the lower left, labeled Dynamic Eco-Lanes, with six green hexagons (Connected Eco-Driving, Multi-Modal Traveler Information, Eco-Speed Harmonization, Eco-Cooperative Adaptive Cruise Control, Dynamic Eco-Lanes, Eco-Ramp Metering), Regulatory/Policy Tool, Educational Tools and Performance Measures. From the upper right corner is a grouping labeled Eco-Integrated Corridor Management (Eco-ICM). The grouping is inside a gray outline box with six green hexagons (Eco-ICM Decision Support System, Eco-Signal Operations Apps, Dynamic Eco-Lanes Apps, Eco-Traveler Information Apps, Dynamic Low Emissions, Support AFV Operations Apps), a gray hexagon labeled Incident Management, Regulatory/Policy Tool, Educational Tools and Performance Measures (placed outside the gray box outline). A dotted line leads to the left to an orange circle labeled Corridor (Control) Data Environments. In the lower right corner of the diagram, there is a grouping labeled Eco-Traveler Information with six green hexagons (Dynamic Eco-Freight Routing, Dynamic Eco-Routing, Dynamic Eco-Transit Routing, Eco-Smart Parking, Multi-Modal Traveler Information, Connected Eco-Driving), Regulatory/Policy Tool, Educational Tools and Performance Measures. There is a dotted line leading up and to the left to an orange circle labeled Regional (Info) Data Environments with a dotted line leading down to another grouping labeled Support for Alternative Fuel Vehicle Operations with two green hexagons (Engine Performance Optimization, AFV Charging Fueling Info), Regulatory/Policy Tool, Educational Tools and Performance Measures.)
Source: www.its.dot.gov/aeris/pdf/AERIS_Transformative%20Concepts%20and%20Applications%20Descriptions%20v10.pdf [Last accessed January 15, 2013].

The Eco-Signal Operations Transformative Concept is intended to use connected vehicle technologies to decrease fuel consumption, GHG, and criteria air pollutant emissions by reducing idling, the number of stops, and unnecessary accelerations and decelerations and improving traffic flow at signalized intersections.

This concept uses wireless data communications between vehicles and roadside infrastructure, including the broadcast of SPAT data to vehicles. Using this information, the Eco-Approach and Departure at Signalized Intersections application performs calculations to provide speed advice to the driver of the vehicle. This advice allows the driver to adapt the vehicle's speed to pass the next signal on green or to decelerate to a stop in the most eco-friendly manner.

The Eco-Traffic Signal Timing applications are similar to current adaptive traffic signal systems; however, the objective would be to optimize traffic signals for the environment using connected vehicle data. This application collects data from vehicles, such as vehicle location, speed, GHG, and other emissions data to determine the optimal operation of the traffic signal system.

Eco-Traffic Signal Priority applications allow either transit or freight vehicles approaching a signalized intersection to request signal priority. These applications consider the vehicle's location, speed, and vehicle type (e.g., alternative fuel vehicles) and associated GHG and other emissions to determine if priority should be granted. Other information, such as a transit vehicle's adherence to its schedule or number of passengers, may also be considered in granting priority.

Connected Eco-Driving applications provide customized real-time driving advice to drivers so that they can adjust their driving behavior to save fuel and reduce emissions while driving on arterials. This advice may include recommended driving speeds, optimal acceleration, and optimal deceleration profiles based on prevailing traffic conditions and interactions with nearby vehicles.



 楼主| 发表于 2015-7-12 14:35:42 | 显示全部楼层
The Dynamic Eco-Lanes Transformative Concept features dedicated lanes optimized for the environment through the use of connected vehicle data to target low-emission, high-occupancy, freight, transit, and alternative fuel vehicles (AFVs). Drivers of suitable vehicles are able to opt in to these dedicated eco-lanes.

Central to this Transformative Concept is an administrative application that supports the operation of Dynamic Eco-Lanes, including establishing criteria for entering the lanes and defining or geo-fencing the eco-lane boundaries. Criteria may include the types of vehicles allowed in the eco-lanes, emissions criteria for entering the eco-lanes, number of lanes available at any time, and the start and end points of the eco-lanes.

Dynamic Eco-Lanes would leverage operational strategies implemented by the operating entity (e.g., a TMC) to reduce vehicle emissions in the lanes. This includes operational strategies such as Eco-Speed Harmonization and Eco-Ramp Metering. Once in the eco-lanes, drivers would be provided with speed limits optimized for the environment. These eco-speed limits would be implemented to help to reduce unnecessary vehicle stops and starts by maintaining consistent speeds, thus reducing GHG and other emissions. Eco-Ramp Metering applications determine the most environmentally efficient operation of metering signals at freeway on-ramps to manage the rate at which vehicles enter the freeway.

Eco-Cooperative Adaptive Cruise Control applications would allow individual drivers to opt in to applications that provide cruise control capabilities designed to minimize vehicle accelerations and decelerations for the benefit of reducing fuel consumption and vehicle emissions. These applications consider terrain, roadway geometry, and vehicle interactions to determine a driving speed for a given vehicle.

Finally, Connected Eco-Driving Applications provide customized real-time driving advice to drivers so that they can adjust their driving behavior to save fuel and reduce emissions while driving on the freeway.

The Dynamic Low Emissions Zone Transformative Concept includes a geographically defined area that seeks to restrict or deter access by specific categories of high-polluting vehicles in order to improve the area's air quality. Low-emissions zones can be dynamic, allowing the operating entity to change the location, boundaries, fees, or time of the low-emissions zone.

Central to this Transformative Concept is a Dynamic Emissions Pricing application that uses connected vehicle technologies to dynamically determine fees for vehicles entering the low-emissions zone. These fees may be based on the vehicle's engine emissions standard or emissions data collected directly from the vehicle using V2I communications.

This concept also enables the low-emissions zone to be dynamic, allowing the operating entity to change the location or time of the low-emissions zone. For example, this would allow the Dynamic Low Emissions Zone to be commissioned based on various criteria, such as atmospheric conditions, weather conditions, or special events.

Pre-trip and En-route Traveler Information is also a critical component of this concept, including information about criteria for vehicles to enter the low-emissions zone, expected fees and incentives for their trip, current and predictive traffic conditions, and the geographic boundaries of the low-emissions zone. Finally, Connected Eco-Driving applications would be encouraged inside the low-emissions zone. Once inside the zone, real-time data from the vehicle would show if it is being driven in a manner that reduces emissions, and the driver could be given an economic reward.

The Support for Alternative Fuel Vehicle Operations Transformative Concept supports the operation of vehicles that do not solely use oil-based fuels, such as electric cars, hybrid-electric vehicles, and fuel-cell vehicles.

This concept includes applications that would collect pertinent environmental data and adjust engine operations to optimize both fuel economy and emissions performance. Information about prevailing traffic conditions, weather conditions, or road grade may also be used as input for optimizing the engines' performance. For example, engine adjustments would be made in real-time on the vehicle to reduce emissions during high ozone alert days or during extremely hot or cold temperatures.

AFV Charging/Fueling applications would provide travelers with information about the locations of AFV charging/fueling stations, allow users to make reservations at charging/fueling stations, and allow for electronic payment using connected vehicle technologies. These applications could also transmit AFV-specific information as part of a crash notification message from an AFV when it is involved in an incident or requires emergency assistance.

The Eco-Traveler Information Transformative Concept would enable development of new traveler information applications through integrated, multisource, multimodal data.

Eco-Routing applications would determine the most eco-friendly route, in terms of minimum fuel consumption or emissions, between a trip origin and a destination for individual travelers. The application could use historical, real-time, and predictive traffic and environmental data using connected vehicle technologies to determine the vehicle's optimal eco-route between its origin and destination.

Eco-Smart Parking applications would provide travelers with real-time parking information including information about the location, availability, type (e.g., AFV-only, street parking, or garage parking), and price. The application could reduce the time required for drivers to search for a parking space, thereby reducing emissions.

The Eco-Integrated Corridor Management (Eco-ICM) Transformative Concept includes the integrated operation of a major travel corridor to reduce transportation-related emissions on arterials and freeways. Integrated operationsmeans partnering among operators of various surface transportation agencies to treat travel corridors as an integrated asset, coordinating their operations simultaneously with a focus on decreasing fuel consumption, GHG emissions, and criteria air pollutant emissions. Central to this concept is a real-time data-fusion and decision support system that uses multisource, real-time V2I data on arterials, freeways, and transit systems to determine which operational decisions have the greatest environmental benefit to the corridor.

Connected vehicle road-weather management applications will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. Such applications could fundamentally change the manner in which weather-sensitive transportation system management and operations are conducted. The broad availability of road weather data from mobile sources, including light vehicles, heavy vehicles, and specialized vehicles operated by public agencies (such as snow plows and other maintenance vehicles) will vastly improve the ability to detect and forecast road weather and pavement conditions, and will provide the capability to manage road-weather response on specific roadway links.

Central to the connected vehicle activities in the Road Weather Management Program is the development of a vehicle data translator (VDT). The VDT is a system that ingests and processes mobile data available on the vehicle and combines this with ancillary weather data sources. The VDT inputs two types of data:
  • Mobile data originating from a vehicle, whether native to the controller access network bus (CANBus) or as an add-on sensor (e.g., pavement temperature sensor mounted to a vehicle).
  • Ancillary data, such as surface weather stations, model output, satellite data, and radar data.

Current development efforts indicate that the VDT will function best where a minimum set of data elements are available. These consist of environmental and vehicle status data elements from the vehicle, including external air temperature, wiper status, headlight status, antilock braking system and traction control system status, rate of change of steering wheel, vehicle velocity, date, time, location, vehicle heading, and pavement temperature, plus ancillary data elements of radar, satellite, and surface station data from fixed data sources.

Once data are acquired by the VDT, they undergo quality checking followed by the application of various algorithms to create useful road weather information. Algorithms developed through VDT Version 3.0 include the following:
  • A precipitation algorithm that will provide an assessment of the type and intensity (amount per hour) or accumulation rate of precipitation that is falling to the road surface by road segment. It is anticipated that the algorithm will identify four precipitation types: rain, snow, ice/mixed, and hail, and it will distinguish between light/moderate and heavy rates of each precipitation type.
  • A pavement condition algorithm is being developed to derive the pavement condition on a segment of roadway from the vehicle observations. Pavement conditions being considered are the following: dry, wet, road splash, snow, icy/slick, and hydroplaning risk.
  • A visibility algorithm is being designed to provide additional information by road segment on both a general decrease in visibility and more specific visibility issues. This approach is intended to report visibility as normal or low and potentially identify specific hazards, including dense fog, heavy rain, blowing snow, and smoke.



您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|BC Morning Website ( Best Deal Inc. 001 )  

GMT-8, 2025-7-8 05:57 , Processed in 0.026213 second(s), 20 queries .

Supported by Best Deal Online X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表